
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2023)
A. Campbell, C. Krogmeier, and G. Young (Editors)

Poster

A GPU Ray Tracing Implementation for Triangular Grid Primitives

Max von Buelow1 , Arjan Kuijper1,2 and Dieter W. Fellner1,2,3

1Technical University of Darmstadt, Germany 2Fraunhofer IGD, Germany
3Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Abstract
Triangular grid primitives are a new technique for more efficient handling of memory intensive meshes, also called micro
meshes in recent proprietary hardware implementations. This makes it a technique with high potential in the area of virtual
environments where hardware capabilities are typically limited. In this poster, we focus on software ray tracing on GPUs
and present a novel, easy-to-implement approach that uses a two-level bounding volume hierarchy (BVH) to accelerate these
grids. The primary goal of our work is to make the technology more accessible by focusing on standard GPU devices without
hardware ray tracing units. With our approach, we are able to encode geometry and BVH with approximately 7.5 bytes per
triangle, reducing standard representations by a factor of 3.73 while reducing BVH construction time. Our data structure
achieves a peak performance impact of 16 % for a three-level subdivision.

CCS Concepts
• Computing methodologies → Ray tracing; Graphics processors; • Theory of computation → Data compression;

1. Introduction

Ray Tracing as a rendering approach [Whi79] is an important tech-
nique for transforming arbitrary scene descriptions such as trian-
gle meshes into an image. It is used in many practical applications
ranging from virtual reality to video games. Recently, it has be-
come increasingly popular in the real-time domain, replacing clas-
sical rasterization, also because of its generally better capabilities
for physically correct global illumination approximation on GPUs
[PBD*10].

Structured primitives, such as triangular grid primitives, can be
used to reduce scene memory consumption in areas where it is
feasible to assume static geometry within a coarse domain. Al-
though generating such representations from arbitrary topologies
is an active research topic, we want to focus our work on ren-
dering such structures using ray tracing. For structured grid prim-
itives, quad meshes have traditionally been used as the base ge-
ometry [BVW21], more recently also in a triangular micro mesh
representation [BP23]. While there are very recent works that im-
plement these primitives [BP23], none of them focus on a pure
software implementation that uses the GPU as a ray tracing de-
vice. The drawback of these is that they require newer hardware
based on proprietary implementations, making the idea less acces-
sible to older or less specialized devices such as smartphones or
self-contained virtual environment devices that also benefit from
ray tracing [OSR09].

In this poster, we present a data structure optimized for ray trac-
ing triangular grid primitives on the GPU. The main idea of our

data structure is to drastically reduce the memory footprint of con-
nectivity data by exploiting the internal structure of such a grid.
This basic structure is accelerated by a secondary level BVH using
semi-implicitly stored bounding spheres that are built around the
geometry during the subdivision recursion.

In summary, our contributions are:

• A joint geometry and BVH data structure for triangular grid
primitives.

• Increased availability due to a simple design that is easy to im-
plement on arbitrary GPU architectures.

2. Ray Tracing of Triangular Grids

As the name suggests, triangular grids can be thought of as primi-
tives in our ray tracer, similar to standard triangles in a ray tracing
pipeline. Consequently, we use a two-level BVH, where the top-
level BVH is built on top of the list of primitives using the surface
area heuristic (SAH) [MB90] and the bottom-level BVH resides
inside a grid primitive to speed up the subdivision geometry. The
geometric structure of our grid primitive data structure is largely
based on the recursive definition of subdivision surfaces and can be
seen in fig. 1, while the vertices define the geometry and the con-
nectivity is implicitly given by the static structure of a grid. For the
lowest level BVH, we construct bounding spheres around each of
the four triangles in each subdivision level.

The main idea of our bottom-level hierarchy is to use a semi-
implicitly derived sphere at position p and radius r for each triangle

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

10.2312/egve.20231341

https://orcid.org/0000-0002-0036-319X
https://orcid.org/0000-0002-6413-0061
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/egve.20231341

2 M. von Buelow et al. / A GPU Ray Tracing Implementation for Triangular Grid Primitives

v0 v1

v2

s0

s1s2

Figure 1: Two-dimensional sketch of the geometric structure for
three subdivisions. The blue circles indicate the bounding spheres
for the first subdivision. Gray triangles indicate further subdivi-
sions without spheres. The bounding sphere of the center triangle
is omitted for a less cluttered visualization.

spanned by vertices (v0,v1,v2) as an enclosing volume and to align
the BVH with the recursive subdivision aspect, which produces the
set of vertices vertices V :

p = 1/3(v0 + v1 + v2) (1)

r = max
v̂i∈V

||v̂i − p||2 (2)

As seen in eq. (1), p is constructed in such a way that it is a triv-
ial arithmetic operation that can be computed efficiently, while r
requires several iterations as defined in eq. (2). Therefore, we only
explicitly store r as one single floating-point number and recom-
pute p during traversal. All radii are stored in memory in a breadth
first search (BFS) traversal order, which ensures that equal levels of
detail are within the same region of memory. In addition, since all
subtrees have the same subdivision depth, the BVH is a complete
tree, making implicit indexing trivial. We have evaluated that it is
optimal to exclude the last two layers containing 16 triangles from
the BVH in order to take advantage of the tradeoff between inter-
secting unnecessary triangles and the additional sphere intersection
overhead [MB90].

The geometry is largely based on an static indexed triangle list
residing in constant memory. Since constant memory benefits from
L1 caching due to high coherence on relatively small memory ar-
eas, accessing this single list is almost as fast as using registers.
Inner vertices are stored per grid primitive, and boundary vertices
are stored in a separate memory area to avoid redundancy.

The traversal of our structure is based on the while-while ap-
proach [AL09], which we implement slightly differently for the
two-level BVH. The first inner while loop traverses the top-level hi-
erarchy and the second traverses the bottom-level hierarchy and its
leaves, rather than separating between inner and leaf nodes. Other
configurations, such as three separate while loops for bottom-level,
top-level, and leaves, proved less efficient and resulted in less de-
vice occupancy. The top-level hierarchies are traversed as usual.

Table 1: Our results on five meshes with three levels of subdivi-
sion. We compare the ray tracing run-time performance impact, the
compression rate gain and the construction time gain on multiple
meshes.

Mesh RT impact Comp. gain Constr. gain
Bike 65.78 % 3.73 47.9
Dragon 34.95 % 3.73 45.28
Head 37.21 % 3.73 35.78
Armadillo 16.27 % 3.73 40.88
Sponza 68.25 % 3.73 42.65

3. Conclusion

In this poster, we presented a novel data structure that exploits the
structure of triangular grid primitives and compresses their con-
nectivity information to a minimum. Since our data structure im-
plicitly preserves the subdivision recursion information, it is possi-
ble to limit to intermediate subdivision depths without regenerating
the data structure, which could be useful in computationally con-
strained environments such as those typically used in virtual real-
ity. Our results in table 1 show that our approach reduces standard
representations by a factor of 3.73 for geometry and BVH, while
we are able to speed up the construction time by a factor of 42
compared to SAH in the lowest levels for a subdivision depth of
three. Our data structure has a performance impact between 16 %
to 68 % for the same three-level subdivision depending on the ren-
dered mesh, but the tradeoff of losing runtime performance for
more efficient storage is a common behavior.

References
[AL09] AILA, TIMO and LAINE, SAMULI. “Understanding the efficiency

of ray traversal on GPUs”. Proceedings of the Conference on High Per-
formance Graphics 2009. HPG ’09. ACM, Aug. 2009. DOI: 10.1145/
1572769.1572792 2.

[BP23] BENTHIN, CARSTEN and PETERS, CHRISTOPH. “Real-Time Ray
Tracing of Micro-Poly Geometry with Hierarchical Level of Detail”.
Computer Graphics Forum (Aug. 2023). DOI: 10 . 1111 / cgf .
14868 1.

[BVW21] BENTHIN, CARSTEN, VAIDYANATHAN, KARTHIK, and
WOOP, SVEN. “Ray Tracing Lossy Compressed Grid Primitives”.
Eurographics 2021 - Short Papers. The Eurographics Association, 2021.
DOI: 10.2312/EGS.20211009 1.

[MB90] MACDONALD, J. DAVID and BOOTH, KELLOGG S. “Heuristics
for ray tracing using space subdivision”. The Visual Computer 6.3 (May
1990), 153–166. DOI: 10.1007/bf01911006 1, 2.

[OSR09] ODOM, CHRISTIAN N. S., SHETTY, NIKHIL J., and REINERS,
DIRK. “Ray Traced Virtual Reality”. Advances in Visual Computing.
Springer Berlin Heidelberg, 2009, 1031–1042. DOI: 10.1007/978-
3-642-10331-5_96 1.

[PBD*10] PARKER, STEVEN G., BIGLER, JAMES, DIETRICH, AN-
DREAS, et al. “OptiX. a general purpose ray tracing engine”. ACM
Transactions on Graphics 29.4 (July 2010), 1–13. DOI: 10.1145/
1778765.1778803 1.

[Whi79] WHITTED, TURNER. “An improved illumination model for
shaded display”. ACM SIGGRAPH Computer Graphics 13.2 (Aug.
1979), 14. DOI: 10.1145/965103.807419 1.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1111/cgf.14868
https://doi.org/10.1111/cgf.14868
https://doi.org/10.2312/EGS.20211009
https://doi.org/10.1007/bf01911006
https://doi.org/10.1007/978-3-642-10331-5_96
https://doi.org/10.1007/978-3-642-10331-5_96
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/965103.807419

