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ABSTRACT

Structure from Motion (SfM) plays a crucial role in unstruc-
tured capturing. While images are usually taken by perspec-
tive cameras, orthographic camera projections do not suffer
from the foreshortening effect, that leads to varying captur-
ing quality in image regions. Most contributions to ortho-
graphic image SfM assume a perspective setup with nearly
infinite focal length. These assumptions lead to potentially
sub-optimal camera pose estimation. Therefore, we propose a
SfM pipeline that is optimized for orthographically projected
images. For this, we estimate initial camera poses using the
factorization method by Tomasi and Kanade. These poses are
further refined by a specialized bundle adjustment implemen-
tation for orthographic projections. The proposed pipeline
surpasses the precision of state-of-the-art work by an order of
magnitude, while consuming considerably less computational
resources.

Index Terms— Camera Pose Estimation, Structure from
Motion, Orthographic Geometry, Multi-View Geometry

1. INTRODUCTION

Modern photogrammetry pipelines use Structure from Mo-
tion (SfM) as a main component to facilitate camera pose esti-
mation from multi-view image datasets. These pipelines have
a multitude of real-world applications from the generation of
digital twins over high precision specimen to usage in virtual
reality application for educational or recreational purposes.

Classical SfM algorithms [2, 3] use a perspective image
projection because this is the way the real world is represented
by most lenses and perceived by human beings. While the
pixel density in the image plane is constant, the foreshorten-
ing effect of perspective projections leads to a pixel density
imbalance for object surfaces that are further away from the
camera, i.e. fewer pixels per real-world surface area. This
may have serious quality implications for 3D reconstruction
pipelines, especially in texture fitting stages. The applica-

tion of orthographic geometry by utilizing telecentric lenses
is suited to mitigate these drawbacks due to the absence of
the foreshortening effect. Therefore, we propose a SfM algo-
rithm for orthographic geometry that enables photogrammet-
ric image processing pipelines for image data acquired with
telecentric lenses.

We perform an extensive comparison to the work of Julià
et al. [4], which is considered state-of-the-art. This compari-
son shows that our system provides (a) a better scalability due
to its iterative design, (b) a higher overall accuracy and (c) a
superior run-time performance.

2. RELATED WORK

Structure from Motion (SfM) algorithms estimate camera
poses based on multi-view image data, as initially defined
by Ullman [5]. First implementations using orthographic
projections are presented by Bennett et al. [6], Harris [7]
and Koenderink and Van Doorn [8]. Tomasi and Kanade [1]
propose an SfM factorization method that use more than two
images to combat ambiguity of camera poses.

As simplification, all four aforementioned solutions use
orthographic camera models. For this reason, Sturm and
Triggs [9] modified the Tomasi and Kanade [1] factorization
for the application on perspective images. The first large-
scale incremental SfM pipeline was presented by Snavely
et al. [10] and applied to web image collections. Following
this implementation, improved SfM pipelines like VisualSfM
[11], MVE [12] and COLMAP [13] have been introduced. An
evaluation of state-of-the-art SfM pipelines is presented by
Bianco et al. [14].

A commonly used technique in iterative SfM pipelines
called bundle adjustment is used to prevent the accumulation
of errors. An overview of this method is presented by Triggs
et al. [15]. Blonquist and Pack [16] propose a bundle adjust-
ment variant specially optimized for orthographic images. In
addition, Oskarsson [17] , Larsson et al. [18] and Julià et al.
[4] introduce specialized orthographic SfM algorithms.
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Fig. 1: Proposed SfM Pipeline Architecture. After an initial pose estimation with three cameras, single cameras are added
iteratively by estimating their position with respect to two already estimated camera poses using the algorithm by Tomasi and
Kanade [1] and a local BA. Every few iterations a global BA is performed to accumulating errors.

3. ORTHOGRAPHIC STRUCTURE FROM MOTION

Our approach initially extracts image feature descriptors as
described in Section 3.1. On the base of these features we
iteratively perform a coarse pose estimation and bundle ad-
justment. The coarse estimation of camera poses is based on
the approach of Tomasi and Kanade [1] and is performed on
groups of three images (see Section 3.3). The group selec-
tion is described in detail in Section 3.2. These estimates are
further refined using local and global BA (see Section 3.4).
Fig. 1 illustrates an overview of our proposed pipeline archi-
tecture.

3.1. Feature Detection and Matching

We jointly extract SIFT [19] and SURF [20] feature positions
xi and their descriptors from each image in the dataset, sim-
ilar to MVE [12]. Subsequently, we apply a nearest neigh-
bor approach to match image feature correspondences before
filtering them using a RANSAC-based approach. The result-
ing feature positions and matches form the foundation for our
coarse pose estimation.

3.2. Group Building

The coarse pose estimation is always carried out on groups of
three cameras with each group containing exactly two previ-
ously aligned cameras. The groups are built by maximizing
the number of features shared between all three cameras of
each group.

3.3. Coarse Pose Estimation

For the coarse pose estimation, we use the algorithm proposed
by Tomasi and Kanade [1] that calculates the relative rotations
between a set of cameras for a set of feature point matches.
In addition to that, the algorithm estimates a shape matrix S
consisting of the 3D positions of all feature points. The goal
is to solve an equation system resulting from an initial matrix
called the measurement matrix D =

[
X,Y

]T
. It contains the

image coordinates of the feature matches and has the dimen-
sions 2f × p with f frames and p feature points.

Together with the unknown rotational matrix R that rep-
resents the camera pose transformations, we construct an
equation system. In order to retrieve those matrices, we per-
form a singular value decomposition (SVD) on the registered
measurement matrix. Due to noise, we only consider the top
three eigenvalues and its eigenvectors which form the basis
for the upcoming non-linear optimization. Because this fac-
torization method is sensitive to outliers, it is run inside of a
RANSAC loop.

3.4. Bundle Adjustment

Bundle adjustment simultaneously optimizes the extrinsic
and intrinsic camera parameters as well as the triangulated
points, thereby preventing error accumulation during the iter-
ative registration of cameras [21]. In our pipeline, we perform
BA on the estimates given by the Tomasi and Kanade Fac-
torization in a local manner. Due to this reoccurring local
BA, we perform the computationally more expensive task of
global BA only every four steps without loss of algorithm
stability [14].

Problem Statement BA minimizes an error metric on the
camera parameters and triangulated points. The most com-
monly used metric is the reprojection error [22]:

e(p) =
∑
j

ρ (rj) =
∑
j

ρ (xj − f(yj ,p)) (1)

where p denotes the camera parameters, xj the image coordi-
nates of observed features, yj the triangulated 3D point that
corresponds to xj . f denotes a function that projects a 3D
point yj onto the same image plane as xj , while ρ denotes an
arbitrary robust error function.

The optimization of the reprojection error is usually for-
mulated as a non-linear least squares problem [15] and com-
monly consists of a large number of residuals. Because each
residual is only relevant for a small subset of camera parame-
ters, the problem is sparse in nature. We exploit this by using
a sparse linear solver as part of the non-linear least squares
solver Ceres.
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Camera Parameters We define the camera parameters pi

to be optimized as follows. Because view rays of a true or-
thographic projection are parallel, the projection of an object
onto the image plane is invariant to translation in its view di-
rection. For that reason, the position of a camera is less im-
portant than its orientation. Therefore, we represent the cam-
eras by placing them on a sphere around the object with a
fixed radius, resulting in the extrinsic parameters of a camera
pi := [qx,i, qy,i, qz,i, qw,i, ui, vi, si]

T.
These are defined as the rotation quaternion qi = (qx,i,

qy,i, qz,i, qw,i), the offset (ui, vi) relative to the camera’s im-
age plane and a scale factor si. While the quaternion suffi-
ciently defines the camera’s orientation, the offset is neces-
sary to account for the fact that not all cameras look at the
same point. Using these seven parameters, a point xcam in
camera space is transformed into world coordinates using the
transformation

Ti(xcam) := qi (sixcam + oi)q
−1
i (2)

with the camera’s offset vector oi = [ui, vi,−r]
T and r the

radius of the sphere.

Residuals After triangulating all tracks by using the method
proposed by Traa [23], the reprojection error residuals rj can
be estimated using the newly calculated point cloud. For a
feature xj , the corresponding triangulated point yj in pro-
jected back onto the image plane by applying

xproj
j =

1

s

(
q−1
i yjqi − oi

)
(3)

and only using the x and y coordinate of xproj
j to calculate

rj = ρ

(
xj −

[
xproj
j,x ,x

proj
j,y

]T
)
. (4)

The residuals rj are iteratively calculated during each opti-
mization step.

3.5. Registration

After running the coarse pose estimation and local bundle
adjustment on a group of three cameras, the group needs to
be registered into the same (global) coordinate system as all
previously reconstructed groups. Apart from the initial three
cameras, each group always contains two cameras that have
been part of at least one other group. By rotating these two
cameras onto their previously registered counterparts, the lo-
cal poses can be transformed into the global coordinate sys-
tem. In our implementation this is done by calculating the
rotation from a unit quaternion qi to another unit quaternion
qj using the equation qr = q∗

i · qj .

4. RESULTS

In Section 4.1, we evaluate our proposed pipeline on synthetic
datasets especially created for this purpose. Furthermore, we
use subsets of these datasets to compare our implementation
against the state-of-the-art solution by Julià et al. [4]. Fi-
nally, the pipeline was applied to real datasets captured with
a telecentric lens in Section 4.2.

4.1. Synthetic Datasets

(a) Suzanne (b) Linked Tori (c) Asian Dragon

Fig. 2: The synthetic datasets used for testing the ortho-
graphic SfM pipeline.

We evaluate our algorithm based on three synthetic mod-
els: Blender’s mascot Suzanne (Fig. 2a), two linked tori
(Fig. 2b) and the XYZ RGB Dragon (Fig. 2c). The models
are procedurally textured with semi-random noise patterns to
ensure a large number of unique features to be detected by
the feature detector.

We evaluate our approach on three different camera posi-
tioning setups: cameras placed on a perfect circle around the
object to mimic real world capturing using a turntable (Cir-
cle), three circles of different heights to test the algorithms
generalization capabilities (Vertical) and a camera setup with
random noise to the rotation direction compared to the Verti-
cal setup in order to test our approaches robustness (Rotated).

Evaluation Metric The deviation of two camera orienta-
tions can be evaluated using quaternions [14]. If the rep-
resentation of the estimated camera orientation qE as well
as the corresponding ground truth qGT are known, the rota-
tion qR that is necessary to rotate qE onto the ground truth
is calculated as qR = q∗

E · qGT. By converting qR into an
axis-angle representation we can calculate a single angle α =
2 |arccos (qR,w)| that represents the difference between esti-
mated orientation and the ground truth. In the following, this
is used as a metric to evaluate the accuracy of our computed
orientations.

Comparison We compare our proposed pipeline to the al-
gorithm of Julià et al. [4], which is to our best knowledge the
state-of-the art solution for SfM on (pseudo)-orthographic im-
age data. Their approach is only able to handle three images
as input. Therefore, we selected three images from each of the
datasets and calculated the feature tracks using our pipeline.
These are subsequently used to estimate the camera poses
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Model Suzanne Linked Tori Dragon

Pose Set Circle Vertical Rotated Circle Vertical Rotated Circle Vertical Rotated

Mean Error α [°] 0.025969 4.338321 14.65476 0.013215 4.342366 14.655496 0.010675 4.350638 21.187649
Julià et al. [4] Standard deviation [°] 0.022264 6.112474 11.951518 0.01083 6.119286 11.95721 0.009367 6.109137 23.838683

Mean Pose Est. Runtime [s] 335.12658 2.943899 1.524096 168.473194 0.595378 1.826083 107.009562 0.719133 0.381937

Mean Error α [°] 0.004297 0.008302 0.009632 0.005631 0.005045 0.008495 0.008546 0.042155 0.025316
Our Algorithm Standard deviation [°] 0.003448 0.008441 0.007153 0.006472 0.003637 0.006157 0.007417 0.030072 0.033767

Mean Pose Est. Runtime [s] 1.672996 0.921427 0.381716 1.593956 0.403308 0.331142 1.337982 0.587157 0.245496

Mean Error α [°] 0.006979 0.002698 0.003835 0.003399 0.004 0.004246 0.010588 0.009142 0.016325
Our Algorithm Standard deviation [°] 0.003107 0.001192 0.002225 0.001689 0.00196 0.004032 0.004122 0.004289 0.006373
(all images) Mean Runtime [s] 45.193533 387.337364 292.109408 266.983307 311.944935 377.671413 186.77068 178.321606 189.716136

Image count 16 48 48 36 48 48 36 48 48

Table 1: Orientation error of the estimated poses on synthetic datasets with three images as well as the full synthtic datasets.

for both algorithms in order to ensure a fair comparison of
both approaches. The system specifications used in our ex-
periments are an Intel Core i5-9600K processor and 2x 8GB
Crucial CT8G4DFS8266 DDR4 memory.

The experimental results (see Tab. 1) show that our algo-
rithm outperforms the state-of-the-art solution on all datasets
and camera setups, usually by several orders of magnitude.
However, our results also imply that the algorithm of Julià
et al. [4] only performs as expected on the circle dataset. A
comparably low execution time and high mean error on the
other datasets indicate that their approach terminates early on
the multi-circle datasets. But even a restriction to the cir-
cle camera setup leads to an outperformance of one order
of magnitude regarding the mean angle error on the datasets
(Suzanne and Linked Tori), while maintaining a significantly
lower execution time. Furthermore, our experiments suggest
that our pipeline scales well to larger datasets (see lower half
of Tab. 1).

4.2. Real Datasets

(a) Valdivia Figurine (b) Elephant Statuette

Fig. 3: The captured datasets used for testing the ortho-
graphic SfM pipeline.

We further evaluate the proposed system on two real
datasets. The datasets are captured with a 0.28X CobaltTL
telecentric lens every ten degrees using a LSDH-100WS
turntable with a resolution of 4.5′′ and a repetition accu-
racy of less than 18′′ [24]. This allows us to evaluate the
results based on the aforementioned ten degrees as ground
truth. As test objects we use a small Valdivia Figurine made
of stone (Fig. 3a) and a Wooden Elephant Statuette (Fig. 3b).

Our experiments result in a mean angular error of 0.984◦ (std
0.463◦) on the valdivia dataset and a mean angular error of
0.234◦ (std 1.397◦) for the elephant.

In comparison to the synthetic datasets, this error is sig-
nificantly higher. While this could signal that our pipeline is
less robust on real data, it is also likely that the actual poses
during acquisition do not match the assumed ground truth due
to measurement irregularities like a slight roll of the camera.
For this reason, we ommited the comparison to Julià et al. [4],
as no accurate comparison would have been possible.

5. CONCLUSION

In our work we presented a novel SfM pipeline that uses the
factorization method by Tomasi and Kanade and a specialized
bundle adjustment implementation to enhance the accuracy
of SfM on orthographic image data. This method enables the
deployment of systems that are able to operate in unstructured
capturing environments but retain a high degree of precision
while circumventing the foreshortening effect.

Our results show that the proposed specialized pipeline
has a mean angular error that is at least one order of mag-
nitude lower than the state-of-the-art while maintaining a su-
perior run-time performance and robustness. On real-world
datasets with circular positioned orthographic cameras, we
measured errors between 0.234◦ and 0.984◦ when optimiz-
ing the angle of our turntable setup.

Source Code The source code and datasets for this paper
are available at https://github.com/kai-neumann/
OrthoSfM.
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